Feed-Forward Compensation for High-Speed Atomic Force Microscopy Imaging of Biomolecules

نویسندگان

  • Takayuki UCHIHASHI
  • Noriyuki KODERA
  • Hisanori ITOH
  • Hayato YAMASHITA
  • Toshio ANDO
چکیده

High-speed imaging by atomic force microscopy (AFM) requires the implementation of a fast control of tip–surface distance to maintain a constant interaction force. In particular, a well-controlled low load force is essential for observing soft biological molecules without causing damage to the sample. The accurate control of tip–surface distance where only feedback control is used is intrinsically difficult particularly for fast scanning. Here, we demonstrate that the combination of feedback and feedforward control is useful for a more accurate distance control. We evaluate the bandwidth performance of the closed loop with and without feed-forward compensation using a model AFM system.We show that the combination of feedback and feedforward control yields a greater than two fold improvement in bandwidth. We have applied this technique to the observation of myosin V and actin filaments at a high scanning rate. [DOI: 10.1143/JJAP.45.1904]

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Atomic Force Microscopy Application in Biological Research: A Review Study

Atomic force microscopy (AFM) is a three-dimensional topographic technique with a high atomic resolution to measure surface roughness. AFM is a kind of scanning probe microscope, and its near-field technique is based on the interaction between a sharp tip and the atoms of the sample surface. There are several methods and many ways to modify the tip of the AFM to investigate surface properties, ...

متن کامل

Long-tip high-speed atomic force microscopy for nanometer-scale imaging in live cells

Visualization of morphological dynamics of live cells with nanometer resolution under physiological conditions is highly desired, but challenging. It has been demonstrated that high-speed atomic force microscopy is a powerful technique for visualizing dynamics of biomolecules under physiological conditions. However, application of high-speed atomic force microscopy for imaging larger objects su...

متن کامل

Wide-area scanner for high-speed atomic force microscopy.

High-speed atomic force microscopy (HS-AFM) has recently been established. The dynamic processes and structural dynamics of protein molecules in action have been successfully visualized using HS-AFM. However, its maximum scan ranges in the X- and Y-directions have been limited to ~1 μm and ~4 μm, respectively, making it infeasible to observe the dynamics of much larger samples, including live c...

متن کامل

Ultra-high resolution imaging of DNA and nucleosomes using non-contact atomic force microscopy.

Visualisation of nano-scale biomolecules aids understanding and development in molecular biology and nanotechnology. Detailed structure of nucleosomes adsorbed to mica has been captured in the absence of chemical-anchoring techniques, demonstrating the usefulness of non-contact atomic force microscopy (NC-AFM) for ultra-high resolution biomolecular imaging. NC-AFM offers significant advantages ...

متن کامل

Tip-sample distance control using photothermal actuation of a small cantilever for high-speed atomic force microscopy.

We have applied photothermal bending of a cantilever induced by an intensity-modulated infrared laser to control the tip-surface distance in atomic force microscopy. The slow response of the photothermal expansion effect is eliminated by inverse transfer function compensation. By regulating the laser power and regulating the cantilever deflection, the tip-sample distance is controlled; this ena...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006